Selective Palladium-Catalyzed Cocyclotrimerization of Arynes with Dimethyl Acetylenedicarboxylate: A Versatile Method for the Synthesis of Polycyclic Aromatic Hydrocarbons ${ }^{\dagger}$

Diego Peña, Dolores Pérez,* Enrique Guitián,* and Luis Castedo
Departamento de Química Orgánica, Universidad de Santiago de Compostela and Unidad Asociada al CSIC, 15706 Santiago de Composteda, Spain
qoenrgui@usc.es

Received April 10, 2000

Abstract

Benzyne ($\mathbf{l a}$) and the substituted derivatives 4,5-difluorobenzyne (1b) and 3-methoxybenzyne (2) undergo chemoselective palladium-catalyzed [2 + 2 + 2]-cocyclotrimerization with dimethyl acetylenedi carboxylate (DMAD) to afford the corresponding phenanthrenes and/or naphthalenes. The major products are phenanthrenes if $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ is used as the catalyst, naphthalenes if $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ is used. When the method is applied to polycyclic arynes 3-6, which are generated from the corresponding o-trimethylsilylaryl triflates, the same reactivity pattern is observed: the reaction can be selectively directed either toward the cocyclization of one molecule of aryne and two molecules of alkyne or to the reaction of two molecules of aryne with one molecule of alkyne, by appropriate choice of the palladium catalyst. The synthesis of polycyclic aromatic compounds 33-39 using this methodology is reported.

Introduction

Polycyclic aromatic hydrocarbons (PAHs) ${ }^{1}$ are of interest for scientists in several areas of research, from environmental chemistry to supramolecular chemistry or materials science. The PAH targets of synthetic organic chemists, once simple compounds such as naphthalenes or phenanthrenes, ${ }^{2}$ are now more challenging objectives induding strained molecules such as helicenes ${ }^{3}$ or fullerene fragments, ${ }^{4}$ nanostructures with interesting optical or electrical properties, and extended graphite-like compounds. ${ }^{5}$ This evolution as regards targets has been paralleled by evolution of the synthetic methods used, which have advanced from classical Friedel-Crafts chemistry to pericyclic reactions, photochemistry, flash vacuum pyrolysis, and cyclizations mediated by transition metals. Although "high-energy methods" can be very useful for the synthesis of some strained PAHs, there seems likely to be a shift toward the use of transition metal strategies that afford mild, high-yielding, selective reactions.

[^0]One of the most convergent methods for assembling benzene rings is the metal-catalyzed [$2+2+2$] cyclotrimerization of alkynes, ${ }^{6}$ an extensively studied reaction that proceeds with a variety of transition metal systems and has been generalized to include the participation of various unsaturated compounds in addition to alkynes, such as alkenes and nitriles. Our group recently demonstrated that benzyne and substituted derivatives ${ }^{7}$ can also be efficiently cyclotrimerized to the corresponding triphenylenes by palladium(0) catalysts, ${ }^{8}$ and that the extension of this reaction to polycyclic arynes provides straightforward access to complex PAHs. ${ }^{9}$ These results, and the known insertion chemistry of stoichiometric metal-benzyne complexes, ${ }^{10}$ led us to consider the possibility of arynes participating in Pd-catalyzed cocyclizations with alkynes, which would dramatically expand the
(6) (a) Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1984, 23, 539-556. (b) Schore, N. E. Chem. Rev. 1988, 88, 1081-1119. (c) Grotjahn, D. B. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Hegedus, L. H., Volume Ed.; Pergamon: Oxford, 1995; Vol. 12, pp 741-770. (d) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49-92. (e) Frühauf, H.-W. Chem. Rev. 1997, 97, 523-596.
(7) General reviews on aryne chemistry: (a) Hoffmann, R. W. Dehydrobenzene and Cycloalkynes; Academic Press: New Y ork, 1967; (b) Hart, H. In The Chemistry of Functional Groups, Suppl. C2: The Chemistry of Triple-Bonded Functional Groups; Patai, S., Ed.; Wiley: Chichester, 1994; pp 1017-1134.
(8) Peña, D.; Escudero, S.; Pérez, D.; Guitián, E.; Castedo, L. Angew. Chem., Int. Ed. 1998, 37, 2659-2661.
(9) Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. Org. Lett. 1999, 1, 1555-1557.
(10) Reviews on transition metal complexes of arynes and cycloalkynes: (a) Buchwald, S. L.; Nielsen, R. B. Chem. Rev. 1988, 88, 1047-1058. (b) Bennett, M. A. PureAppl. Chem. 1989, 61, 1695-1700. (c) Bennett, M. A.; Schwemlein, H. P. Angew. Chem., Int. Ed. Engl. 1989, 28, 1296-1320. (d) Buchwald, S. L.; Broene, R. D. In Compre hensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Hegedus, L. H., Volume Ed.; Pergamon: Oxford, 1995; Vol. 12, pp 771-784. (e) Bennett, M. A.; Wenger, E. Chem. Ber./ Recuel 1997, 130, 1029-1042.
synthetic potential of our methodology. We now report in full the results of our studies in this field. ${ }^{11,12}$

1aR=H 1b $R=F$

4

2

5

3

6

Results and Discussion

Preparation of the Aryne Precursors. As substrates for our experiments we selected the arynes 1-6. 1,2-Didehydrobenzene (benzyne, 1a) was selected as the simplest and more easily available aryne. To test the scope of the cyclization, 4,5-difluorobenzyne (1b) was chosen as an example of an aryne with strong electronwithdrawing groups, while 3-methoxybenzyne (2) would allow us to study the regioselectivity of the cycloaddition. Polycydic arynes 3-6 would give a broader view of these aspects and of the possibility of constructing more complex PAHs.

In our previous work we found that the method of choice for the generation of arynes was treatment of the corresponding o-trimethylsilylaryl triflates with CsF at room temperature. The synthesis of triflates 22 and 26 has already been reported, ${ }^{8}$ and the precursors of the polycyclic arynes can easily be prepared by similar twoor three-step procedures from the corresponding obromohydroxyarenes. Thus 1-trimethylsilylnaphthyl 2-trifluoromethanesulfonate (9) was prepared from commercially available 1-bromo-2-naphthol (7) (eq 1). Treatment of 7 with hexamethyldisilazane (HMDS) at $70^{\circ} \mathrm{C}$ gave a quantitative yield of trimethylsilyl ether 8, which was transformed into triflate 9 in one pot by successive treatment with $\mathrm{n}-\mathrm{BuLi}$ (1 equiv, $-78{ }^{\circ} \mathrm{C}$ to room temperature) and $\mathrm{Tf}_{2} \mathrm{O}$.

The precursor of aryne 4, 10-trimethylsilylphenanthryl 9-trifluoromethanesulfonate (13), was prepared from commercially available 9-phenanthrol (10) (eq 2). Selective ortho-bromination was achieved in good yield by reaction of $\mathbf{1 0}$ with N -bromosuccinimide (NBS) in the presence of a catalytic amount of diisopropylamine. ${ }^{13}$ Sequential treatment of the bromide $\mathbf{1 1}$ with n-BuLi and TMSCI (twice) in one pot afforded trimethylsilyl ether 12, which was used in the next step without further

[^1]
Scheme 1

purification because of its instability. Reaction of crude 12 with n -BuLi and quenching with $\mathrm{Tf}_{2} \mathrm{O}$ afforded triflate 13 in 55\% overall yield from 11.

Similar procedures were followed for the synthesis of triflates 20 and 21, although the 4-phenanthrol corresponding to 21 was not commercially available. Preparation of this starting material also involved aryne chemistry as follows. 1,2-N aphthyne (3) was generated in the presence of furan by treatment of triflate $\mathbf{1 4}$ with n-BuLi. Acidic workup of the products of its Diels-Alder reaction afforded phenanthrols $\mathbf{1 6}$ and $\mathbf{1 7}$ in 2.6:1 ratio and 78\% overall yield. Bromination of the crude mixture in the conditions described above yielded a mixture of o-bromophenanthrols which were easily separated by column chromatography, allowing the isolation of 2-bromo-1phenanthrol (18) and 3-bromo-4-phenanthrol (19) in 48\% and 19% yields, respectively. The corresponding trimethylsilylaryl triflates $\mathbf{2 0}$ and 21 were obtained in onepot transformations from 18 and 19, respectively, in good overall yields (Scheme 1).

Cocyclotrimerization of Simple Arynes with DMAD. The main objective of our work was to test the feasibility and efficiency of palladium-catalyzed cocyclotrimerization between benzyne and alkynes. A problem generally encountered with cocycl otrimerization reactions of alkynes is lack of chemoselectivity, which leads to complex mixtures of products and limits the synthetic utility of these reactions. Previous solutions to this problem have consisted in partial intramolecular cyclotrimerization of α, ω-diynes with a monoalkyne, ${ }^{6 a}$ or in reaction of a preformed metallacyclopentadiene with a third alkyne. ${ }^{14}$ Purely intermolecular selective cotrimerizations are rare, and the known examples are usually based on the individual alkynes having very different reactivities for simple cyclotrimerization. ${ }^{15}$

Analysis of the literature on palladium-catalyzed cyclotrimerizations suggests that arynes and alkynes do

[^2]Scheme 2

Table 1. Pd-Catalyzed Cocyclization of Benzyne (1a), 4,5-Difluorobenzyne (1b) and 3-Methoxybenzyne (2) with DMAD ${ }^{\text {a }}$
product yields, \%c

entry	aryne	cond ${ }^{\text {b }}$	phenanthrene	naphthalene	triphenylene
1	1a	A	84 (24a)	7 (25a)	2
2	1a	B	10 (24a)	83 (25a)	-
3	1b	A	64 (24b)	8 (25b)	$8^{\text {d }}$
4	1b	B	9 (24b)	54 (25b)	-
5	2	A	22 (27) 60 (28)	6 (29)	-
6	2	B	3 (27) 11 (28)	82 (29)	-

${ }^{\text {a }}$ See Schemes 2, 3. ${ }^{\text {b }}$ Procedure A: DMAD (1.4 equiv), CsF (2 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (0.1 equiv); $\mathrm{CH}_{3} \mathrm{CN}$, rt. Procedure B: DMAD (5 equiv), CsF (2 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ (0.05 equiv); $\mathrm{CH}_{3} \mathrm{CN}$, rt. ${ }^{\mathrm{c}}$ Yield of isolated products. ${ }^{\text {d }} 2,3,6,7,10,11$-Hexafluorotriphenylene.
have very different reactivities: whil e we recently showed that arynes, which are strongly electrophilic, are efficiently cyd otrimerized by $\operatorname{Pd}(0)$ catalysts, ${ }^{8}$ there are few examples of efficient cyclotrimerization of alkynes using these complexes. ${ }^{16-19}$ We envisaged that this difference in reactivity, rather than being a disavantage, might provide the chemoselectivity required for a synthetically useful cocyclization reaction. With this in mind we started our study with the $\operatorname{Pd}(0)$-catalyzed reactions of simple arynes with the electron-deficient al kyne dimethyl acetylenedicarboxylate (DMAD, 23).

We found that in the presence of $\mathbf{2 3}$ and catalytic amounts of $\operatorname{Pd}(0)$, slow generation of benzyne by roomtemperature treatment of 22a with CsF^{20} in acetonitrile afforded mixtures of phenanthrene 24a and naphthal ene 25a, together with minor amounts of triphenylene (Scheme 2). When various reaction conditions were tried in order to direct the reaction toward the formation of either the phenanthrene or the naphthalene, the best yield of 24a was obtained using 1.4 equiv of the alkyne and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as catalyst (Table 1, entry 1). Larger excess of the alkyne produced less phenanthrene and more naphthalene, but selective formation of $\mathbf{2 5 a}$ was not achieved even with 10 equiv of alkyne. However, naphthalene 25a was

[^3]obtained in good yield and with very good selectivity when $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ was used as the catalyst (entry 2).
The same chemoselectivity was observed when DMAD was reacted with the substituted arynes $\mathbf{1 b}$ and $\mathbf{2}$ under similar reaction conditions. In the presence of excess DMAD and 0.1 equiv of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, generation of $4,5-$ difluorobenzyne (1b) by treatment of triflate 22b with CsF afforded a mixture of phenanthrene 24b (64\%), naphthalene 25b (8\%), and 2,3,6,7,10,11-hexafluorotriphenylene (8\%) (entry 3), while the use of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ as catalyst resulted in the formation of naphthalene 25b as major product (54\%) and only a 9% yield of $\mathbf{2 4 b}$ (entry 4). In the case of 3-methoxybenzyne (2), treatment of triflate $\mathbf{2 6}$ with CsF in the presence of DMAD and catalytic $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ afforded the isomeric phenanthrenes 27 and $\mathbf{2 8}$ in 22% and 60% yield respectively, together with naphthalene 29 in 6\% yield (Scheme 3; Table 1, entry 5). Selective formation of naphthalene 29, in 82% yield, was again achieved using $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ as catalyst; in these conditions phenanthrenes $\mathbf{2 7}$ and $\mathbf{2 8}$ were isolated in 3% and 11% yield, respectively.
These results show that the intermolecular cocycl oaddition of arynes with DMAD can be made highly chemoselective and can easily be switched between theformation of phenanthrenes and the formation of naphthalenes, by appropriate selection of the catalyst. This latter result can be attributed to the different nature of the ligands coordinated to palladium in each complex, which can lead to the formation of different reaction intermediates. In the experiments carried out using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (entries 1, 3, and 5) it was observed the initial formation and eventual disappearance of a compound that upon isolation was characterized as complex $\mathbf{3 0}^{21}$ and is assumed to be one of the intermediates involved in the formation of the phenanthrenes. By contrast, the "lightly stabilized" complex $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ (entries 2, 4, and 6) is expected to form complex 31, ${ }^{17,22}$ which upon reaction with a molecule of aryne would directly afford the naphthalenes.

31
Cocyclotrimerization of Polycyclic Arynes with DMAD. Having proved the efficiency of the above method for selective cocyclization of simple arynes with DMAD, we decided to study its applicability to polycydlic arynes. Gratifyingly, we found the same reactivity pattern: $\mathrm{Pd}_{2}-$ $(\mathrm{dba})_{3}$ selectively promotes the cocyclization of one molecule of aryne with two molecules of alkyne, while $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ catalyzes the cocyclization of two molecules of aryne with one molecule of alkyne. For example when 1,2-naphthyne (3) generated from triflate $\mathbf{9}$ was reacted with a 5 -fold excess of DMAD in the presence of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ (0.05 equiv), the tetrasubstituted phenanthrene 32 was isolated as the only product in an excellent 94% yield (Scheme 4); when the catalyst was $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (0.1 equiv) and a lower excess of alkyne was used (1.4 equiv), the

[^4]
Scheme 3

Scheme 4

product was a mixture of the three possible regioi somers resulting from the cycloaddition of two molecules of naphthyne and one molecule of alkyne, 33, 34, and 35 (in 7.2:2.6:1 ratio as determined by ${ }^{1} \mathrm{H}$ NMR). As expected, the major product was the asymmetric isomer 33. Identification of the symmetric isomers was based on their ${ }^{1} \mathrm{H}$ NMR spectra, particularly on diagnostic chemical shifts and on COSY and NOESY experiments (NOE correlations shown in Scheme 4). Despite the low regioselectivity of this reacion, which limits its synthetic utility, it nevertheless allows the construction of three interesting polycyclic systems, remarkably the pentahelicene 34, a system for which few synthetic approaches are available. ${ }^{23,3 b}$

The above results, and those obtained in analogous cycloaddition experiments with arynes 4,5, and 6 (generated from the corresponding o-trimethylsilylaryl triflates 13, 20, and 21, respectively) are summarized in Table 2. Particular attention is drawn to the synthesis of the highly strained dibenzo[f,j]picene 37 in good yield by Pd-$\left(\mathrm{PPh}_{3}\right)_{4}$-catalyzed cocyclotrimerization of phenanthryne 4 with DMAD (entry 3) and to the excellent yields obtai ned in the reactions catalyzed by $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ (entries 2, 4, 5, and 6), which afforded the tetrasubstituted triphenylene 36, chrysene 38, and benzo[c] phenanthrene ([4]-helicene) 39.

In conclusion, this work shows that arynes can undergo selective palladium-catalyzed cocycl otrimerization with DMAD, and that by appropriate choice of the catalyst

[^5]Table 2. Pd-Catalyzed Cocyclizations of Polycyclic Arynes 3-6 with DMAD

entry	aryne	cond. ${ }^{\text {a }}$	product yields, \% ${ }^{\text {b }}$		
			$\begin{aligned} & \text { [2 aryne } \\ &+1 \text { DMAD] } \end{aligned}$	$\begin{aligned} & {[1 \text { aryne }} \\ + & 2 \text { DMAD] } \end{aligned}$	aryne trimers
1	3	A	$68(33+34+35)^{\text {c }}$	-	21
2	3	B	-	94 (32)	-
3	4	A	62 (37)	-	13
4	4	B	-	91 (36)	-
5	5	B	-	96 (38)	-
6	6	B	-	74 (39)	-

a Procedure A: DMAD (1.4 equiv), CsF (2 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.1$ equiv); $\mathrm{CH}_{3} \mathrm{CN}$, rt. Procedure B: DMAD (5 equiv), CsF (2 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}\left(0.05\right.$ equiv); $\mathrm{CH}_{3} \mathrm{CN}$, rt. ${ }^{\mathrm{b}}$ Yield of isolated products. ${ }^{\mathrm{c}}$ Ratio 33/34/35, 7.2:2.6:1, as determined by ${ }^{1} \mathrm{H}$ NMR.

36

38

37

39
the reaction can be selectively directed either toward the cocyclization of one molecule of aryne with two molecules of alkyne or to the reaction of two molecules of aryne with one molecule of alkyne. The method can be applied to polycyclic arynes and provides convergent access to a variety of polycyclic aromatic compounds.

Experimental Section

General. All reactions were performed under argon. Solvents were dried by distillation from a drying agent: $\mathrm{Et}_{2} \mathrm{O}$ and THF from Na /benzophenone; toluene from Na ; $\mathrm{CH}_{3} \mathrm{CN}$ from CaH_{2}. TMSCl and i- $\mathrm{Pr}_{2} \mathrm{NH}$ were distilled from CaH_{2} prior to use. Reported melting points are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 250.13 and 62.83 MHz , respectively. LR and HR mass spectra were recorded using EI (70 eV) or FAB. TLC was performed on Merck silica gel $60 \mathrm{~F}_{254}$ or type E Merck aluminum oxide $60 \mathrm{~F}_{254}$; chromatograms were visualized with UV light (254 and 360 nm), phosphomolybdic acid, and/or p-anisaldehyde. Column chromatography was performed on Merck silica gel 60 (ASTM 230-400 mesh) or Merck neutral alumina 90 (ASTM 70-230 mesh), deactivated with 6\% water. 2-Trimethylsilylphenyl triflate ${ }^{20}$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}{ }^{24}$ were prepared following published procedures. Commercial reagents were purchased from Aldrich Chemi cal Co. and were used without further purification, except 9-phenanthrol, which was chromatographed before used.

Preparation of the Precursors of the Arynes. ${ }^{25}$
1-Trimethylsilylnaphthyl 2-Trifluoromethanesulfonate (9). A solution of 1-bromo-2-naphthol ($7,2.23 \mathrm{~g}, 10 \mathrm{mmol}$) and HMDS ($2.06 \mathrm{~mL}, 10 \mathrm{mmol}$) in THF (40 mL) was refluxed for 90 min . The solvent was evaporated under reduced pressure, and the residue was subjected to vacuum to remove excess NH_{3} and unreacted HMDS. ${ }^{1} \mathrm{H}$ NMR of the reaction mixture showed
(24) Hegedus, L. S. In Palladium in Organic Synthesis, in Organometallics in Synthesis: A Manual; Schlosser, M., Ed.; J ohn Wiley \& Sons: New York, 1994.
(25) F or the preparation of 22b and 26, see Supporting Information of ref 11 .
the formation of silyl ether $\mathbf{8}$ in quantitative yield. The crude product was dissolved in THF (40 mL), the solution was cooled to $-100^{\circ} \mathrm{C}$, and $\mathrm{n}-\mathrm{BuLi}(4.46 \mathrm{~mL}, 2.41 \mathrm{M}, 11 \mathrm{mmol})$ was added dropwise. Stirring was kept up for 20 min while the temperature reached $-80^{\circ} \mathrm{C}$, whereupon $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added. The mixture was again cooled to $-100^{\circ} \mathrm{C}, \mathrm{Tf}_{2} \mathrm{O}(2.1 \mathrm{~mL}, 12.5$ mmol) was added dropwise, and stirring was again kept up for 20 min while the temperature returned to $-80^{\circ} \mathrm{C}$. Cold saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was added, the phases were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2} ;\right.$ 5:95 Et $\mathrm{E}_{2} \mathrm{O} /$ hexane) to afford 9 as a col orless oil ($3.032 \mathrm{~g}, 87 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.87(\mathrm{~m}$, $2 \mathrm{H}), 7.61-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.58(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.5,137.5,132.4,132.3,129.3,129.0$, $128.8,126.7,126.3,119.1,118.7(q, J=321 \mathrm{~Hz}), 2.2 ; \mathrm{MS}, \mathrm{m} / \mathrm{z}$ (\%): 348 (1.2).

10-Bromo-9-phenanthrol (11). A solution of NBS (819 mg , 4.6 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ was added dropwise over 30 min to a solution of 9-phenanthrol ($882 \mathrm{mg}, 4.6 \mathrm{mmol}$) and i- $\mathrm{Pr}_{2^{-}}$ $\mathrm{NH}(64 \mu \mathrm{~L}, 0.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After addition was complete, the mixture was stirred at room temperature for 1 h , poured on $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$, and acidified to pH 1 by careful addition of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Column chromatography of the residue ($\mathrm{SiO}_{2}, 1: 3$ AcOEt/hexane) afforded 11 as a white solid ($1.064 \mathrm{~g}, 84 \%$): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 8.54(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.29(\mathrm{dd}, \mathrm{J}=7.4,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 8.05(\mathrm{dd}, \mathrm{J}=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.44(\mathrm{~m}, 4 \mathrm{H})$, 6.22 (s, 1H); ${ }^{13} \mathrm{C}$ NMR (THF-d ${ }_{8}$) $\delta 150.2,132.9,132.4,129.5$, 129.3, 129.0, 128.6, 128.1, 128.0, 126.5, 125.1, 124.6, 124.5, 105.1; MS, m/z (\%): 274 (20), 272 (20); HRMS for $\mathrm{C}_{14} \mathrm{H}_{9}{ }^{79} \mathrm{BrO}$, calcd: 271.9837, found: 271.9841; HRMS for $\mathrm{C}_{14} \mathrm{H}_{9}{ }^{81} \mathrm{BrO}$, calcd: 273.9816, found: 273.9811.

10-Trimethylsilylphenanthryl 9-Trifluoromethanesulfonate (13). n-BuLi ($480 \mu \mathrm{~L}, 2.35 \mathrm{M}, 1.125 \mathrm{mmol}$) was added dropwise to a solution of $\mathbf{1 1}(205 \mathrm{mg}, 0.75 \mathrm{mmol})$ in THF $\left(10 \mathrm{~mL}\right.$) cooled to $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 15 min , TMSCI ($150 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) was added, the cooling bath was removed, and stirring was kept for 10 min at room temperature. The mixture was again cooled to $-78{ }^{\circ} \mathrm{C}$, n-BuLi (320 $\mu \mathrm{L}, 2.35 \mathrm{M}, 0.75 \mathrm{mmol}$) was added dropwise, stirring was kept up at $-78^{\circ} \mathrm{C}$ for 15 min , and $\mathrm{TMSCI}(150 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) was added. Stirring at room temperature was kept up overnight, $\mathrm{H}_{2} \mathrm{O}$ (15 mL) was added, and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to afford crude 12, which was taken to the next step without further purification. To a solution of this crude residue in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, $\mathrm{n}-\mathrm{BuLi}(335 \mu \mathrm{~L}, 2.35$ $\mathrm{M}, 0.79 \mathrm{mmol}$) was dropwise added. The mixture was stirred at room temperature for 4 h and cooled again to $0^{\circ} \mathrm{C}$, and then $\mathrm{Tf}_{2} \mathrm{O}(880 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ was added. Stirring was kept for 40 min , and then saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (SiO_{2}; hexane) to afford 13 ($138 \mathrm{mg}, 55 \%$): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 8.53-8.47(\mathrm{~m}$, $2 \mathrm{H}), 8.07(\mathrm{~m}, 1 \mathrm{H}), 7.97(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.44(\mathrm{~m}, 4 \mathrm{H}), 0.46(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 147.9,134.6,132.7,130.5,130.0$, 129.7, 128.4, 127.3, 127.1, 126.6, 125.8, 123.3, 122.7, 122.2, 118.8 (q, J = 320 Hz), 2.2; MS, m/z (\%): 398 (13); HRMS for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{SSi}$, calcd: 398.0620, found: 398.0626.

1-Bromonaphthyl 2-Trifluoromethanesulfonate (14). i- $\mathrm{Pr}_{2} \mathrm{NH}(3 \mathrm{~mL}, 17.2 \mathrm{mmol})$ and $\mathrm{Tf}_{2} \mathrm{O}(5.8 \mathrm{~mL}, 34.4 \mathrm{mmol})$ were added to a solution of 1-bromo-2-naphthol (7, $3.84 \mathrm{~g}, 17.2$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 2 h . Aqueous $\mathrm{NaHCO}_{3}(5 \%, 20 \mathrm{~mL})$ was added, the phases were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
filtered, and concentrated under reduced pressure. The residue was purified by column chromatography ($\mathrm{SiO}_{2} ; 3: 97 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane) to afford $14(5.49 \mathrm{~g}, 90 \%)$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.33$ $(\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.60(\mathrm{~m}$, $2 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 144.7,132.5$, 132.1, 129.5, 128.4, 127.9, 127.3, 127.0, 119.3, 118.8 (q, J = 320 Hz), 115.8; MS, m/z (\%): 356 (19), 354 (18); HRMS for $\mathrm{C}_{11} \mathrm{H}_{6}{ }^{79} \mathrm{BrF}_{3} \mathrm{O}_{3} \mathrm{~S}$, calcd: 353.9173 , found: 353.9165 ; HRMS for $\mathrm{C}_{11} \mathrm{H}_{6}{ }^{81} \mathrm{BrF}_{3} \mathrm{O}_{3} \mathrm{~S}$, calcd: 355.9153 , found: 355.9159 .
1-Phenanthrol (16) and 4-Phenanthrol (17). n-BuLi (7.4 $\mathrm{mL}, 2.29 \mathrm{M}, 16.8 \mathrm{mmol}$) was dropwise added to a sol ution of $14(5.44 \mathrm{~g}, 15.3 \mathrm{mmol})$ and furan ($7.3 \mathrm{~mL}, 153 \mathrm{mmol}$) in THF $(40 \mathrm{~mL})$ cooled to $-78^{\circ} \mathrm{C}$. The mixture was allowed slowly to reach room temperature and was stirred overnight. Then 10\% aqueous HCl (20 mL) was added, and vigorous stirring was kept up for 5 h . The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was chromatographed ($\mathrm{SiO}_{2}, 1: 9 \mathrm{AcOEt} /$ hexane) to afford a mixture of phenanthrols $\mathbf{1 6}$ and $\mathbf{1 7}$ (2.31 $\mathrm{g}, 78 \%$, 2.6:1 ratio as determined by ${ }^{1} \mathrm{H}$ NMR) which was taken to the next step without further purification. A small portion of this mixture was subjected to a second column chromatography ($\mathrm{SiO}_{2} ; 1$ 1:9 AcOEt/hexane) to obtain analytical samples of 16 and 17 . Data for 16: ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~d}, \mathrm{~J}=8.5$, 1 H), 8.29 (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $8.15(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}$, $\mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.57(\mathrm{~m}, 2 \mathrm{H})$, $7.49(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{br} \mathrm{s}$, $1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 151.8,132.1,131.9,130.0,128.6$, $126.7,126.6$ (2 CH), 126.2, 123.1, 121.8, 119.9, 115.5, 110.6; MS, m/z (\%): 194 (95), 165 (100); HRMS for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}$, calcd: 194.0732, found: 194.0723. Data for 17: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 9.51 (dd, J $=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-$ $7.42(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{dd}, \mathrm{J}=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}$, J $=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.77$ (dd, J $=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 154.3,134.9,133.5,130.2,128.5,128.2,128.0,127.0$, 126.5, 126.3, 125.9, 121.6, 119.3, 113.2; MS, m/z (\%): 194 (100); HRMS for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}$, cal cd: 194.0732, found: 194.0728.
2-Bromo-1-phenanthrol (18) and 3-Bromo-4-phenanthrol (19). A solution of NBS ($2.07 \mathrm{~g}, 11.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(70 \mathrm{~mL}$) was added dropwise over 30 min to a solution of the previously obtained mixture of $\mathbf{1 6}$ and $\mathbf{1 7}$ ($2.25 \mathrm{~g}, \mathbf{1 1 . 6} \mathrm{mmol}$) and i- $\mathrm{Pr}_{2} \mathrm{NH}(162 \mu \mathrm{~L}, 1.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. After addition was complete, the mixture was stirred at room temperature for 1 h , poured on $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$, and acidified to pH 1 by careful addition of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Column chromatography of the residue ($\mathrm{SiO}_{2}, 5: 95 \mathrm{AcOEt}$ /hexane) afforded 18 ($1.520 \mathrm{~g}, 48 \%$) and 19 ($600 \mathrm{mg}, 19 \%$) as white solids. Data for 18: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~m}, 1 \mathrm{H}), 8.24(\mathrm{~d}$, $\mathrm{J}=9.1,1 \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.62(\mathrm{~m}, 5 \mathrm{H}), 6.07$ (s, 1H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 148.4,131.9,130.7,129.5,128.6$, 128.5, 127.0, 126.9, 126.7, 122.8, 122.1, 120.2, 116.0, 105.9; MS, m/z (\%): 274 (100), 272 (97). Data for 19: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 9.56(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, \mathrm{J}=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-$ $7.49(\mathrm{~m}, 5 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 150.3,134.1,132.6,129.8,129.0,128.60,128.55$, $128.3,126.8,126.53,126.48,121.8,119.9,108.8 ;$ MS, m/z (\%): 274 (76), 272 (73)

2-Trimethylsilylphenanthryl 1-Trifluoromethanesulfonate (20). A solution of 1-bromo-2-phenanthrol (18) (221 mg , 0.81 mmol) and HMDS ($165 \mu \mathrm{~L}, 0.81 \mathrm{mmol}$) in THF (5 mL) was refluxed for 90 min . The solvent was evaporated under reduced pressure, and the residue was subjected to vacuum to remove excess NH_{3} and unreacted HMDS. Following the procedure described above for the preparation of 9 , the crude product so obtained was treated with n-BuLi ($385 \mu \mathrm{~L}, 2.41 \mathrm{M}$, 0.93 mmol) and $\mathrm{Tf}_{2} \mathrm{O}$ ($170 \mu \mathrm{~L}, 1.01 \mathrm{mmol}$). The residue obtained after workup was purified by column chromatography (SiO_{2}; hexane) to afford $\mathbf{2 0}$ ($263 \mathrm{mg}, 82 \%$) as a white solid: $\mathrm{mp} 68{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 8.55-8.50(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.51$ (m, 6H), $0.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 149.0,133.3,132.4$, 132.1, 131.9, 129.2, 128.7, 128.5, 127.7, 127.4, 125.2, 123.0,
122.5, 119.3, 118.8 (q, J = 321 Hz), 0.1; MS, m/z (\%): 398 (23); HRMS for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{SSi}$, calcd: 398.0620, found: 398.0624.

3-Trimethylsilylphenanthryl 4-Trifluoromethanesulfonate (21). A solution of 3-bromo-4-phenanthrol (19, 650 mg , 2.38 mmol) and HMDS ($490 \mu \mathrm{~L}, 2.83 \mathrm{mmol}$) in THF (10 mL) was refluxed for 90 min . The solvent was evaporated under reduced pressure, and the residue was subjected to vacuum to remove excess NH_{3} and unreacted HMDS. Following the procedure described above for the preparation of 9 , the crude product was treated with n-BuLi ($1.09 \mathrm{~mL}, 2.41 \mathrm{M}, 2.62 \mathrm{mmol}$) and $\mathrm{Tf}_{2} \mathrm{O}(500 \mu \mathrm{~L}, 3.0 \mathrm{mmol})$. The residue obtained after workup was purified by column chromatography (SiO_{2}; hexane) to afford 21 as a white solid ($747 \mathrm{mg}, 79 \%$): mp $49{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.10(\mathrm{~m}, 1 \mathrm{H}), 7.96-7.66(\mathrm{~m}, 7 \mathrm{H}), 0.66(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 149.5,135.5,134.1,133.1,132.4$, 129.0, 128.5, 128.1, 127.9, 127.6, 127.3, 126.5, 125.5, 123.9, 118.5 (q, J = 321 Hz), 0.5; MS, m/z (\%): 398 (17); HRMS for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{SSi}$, calcd: 398.0620, found: 398.0620.

General Procedures for the Cocyclization of Arynes with DMAD. Procedure a. A solution of the aryne precursor (0.5 mmol approximately) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added to a suspension of finely powdered anhydrous CsF (2 equiv), DMAD (23, 1.4 equiv), and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (0.1 equiv) in $\mathrm{CH}_{3} \mathrm{CN}$ (5 mL). The mixture was stirred under argon at room temperature for 12 h . The solvent was evaporated, and the residue was subjected to col umn chromatography to isolate the products. Procedure b. As for Procedure a, but using a larger excess of $\mathbf{2 3}$ (5 equiv) and $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ (0.05 equiv) as catalyst.

Cocyclization of 1,2-Didehydrobenzene (benzyne, 1a). Synthesis of Dimethyl Phenanthrene-9,10-dicarboxylate (24a). Procedurea was followed, using 22a ($209 \mathrm{mg}, 0.7 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(81 \mathrm{mg}, 0.07 \mathrm{mmol}), 23(0.120 \mathrm{~mL}, 0.98 \mathrm{mmol})$, and CsF ($213 \mathrm{mg}, 1.4 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(16 \mathrm{~mL})$. Column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3} ; 1: 4 \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane, then 1:1:2 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexane) afforded triphenylene ($1 \mathrm{mg}, 2 \%$), 24a ($86 \mathrm{mg}, 84 \%$) and 25a ($18 \mathrm{mg}, 7 \%$). Synthesis of Tetramethyl Naphtha-Iene-1,2,3,4-tetracarboxylate (25a). Procedure b was followed, using 22a ($179 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(31 \mathrm{mg}$, $0.03 \mathrm{mmol}), 23(0.380 \mathrm{~mL}, 3 \mathrm{mmol})$, and CsF ($182 \mathrm{mg}, 1.2$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(12 \mathrm{~mL})$. Column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3} ; 1: 4\right.$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane, then 1:1:2 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexane) afforded 24a ($9 \mathrm{mg}, 10 \%$) and 25a ($180 \mathrm{mg}, 83 \%$). Data for 24a: mp 130 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.67(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{dd}, \mathrm{J}=$ 8.1, 1.1 Hz, 2 H), 7.71-7.64 (m, 4 H), 4.03 (s, 6 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.3,130.9,129.8,128.4,127.6,126.9,126.8,122.8$, 52.8; MS, m/z (\%): 294 (16); HRMS for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4}$, calcd: 294.0892, found: 294.0905; Anal. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4}$, calcd: C, 73.46 ; $\mathrm{H}, 4.80$; found: C, $73.90 ; \mathrm{H}, 5.24$. Data for 25a: ${ }^{26} \mathrm{mp} 147{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{dd}, \mathrm{J}=6.5,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, \mathrm{J}$ $=6.5,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 6 \mathrm{H}), 3.92(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 167.1,166.6,133.8,129.9,129.7,127.4,126.1,53.1 ;$ MS, m/z (\%): 360 (25); HRMS for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{8}$, calcd: 360.0845 , found: 360.0804.

Cocyclization of 4,5-Difluoro-1,2-didehydrobenzene (4,5-difluorobenzyne, 1b). Synthesis of Dimethyl 2,3,6,7-Tetrafluorophenanthrene-9,10-dicarboxylate (24b). Procedure a was followed, using 22b ($117 \mathrm{mg}, 0.35 \mathrm{mmol}$), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(41 \mathrm{mg}, 0.035 \mathrm{mmol}), 23(0.172 \mathrm{~mL}, 1.4 \mathrm{mmol})$ and CsF ($106 \mathrm{mg}, 0.7 \mathrm{mmol}$). Column chromatography ($\mathrm{SiO}_{2} ; 1: 3$ to 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane then 1:1:2 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexane) afforded 2,3,6,7,10,11-hexafluorotriphenylene ($3 \mathrm{mg}, 8 \%$), phenanthrene 24b ($46 \mathrm{mg}, 64 \%$), and naphthalene 25b ($12 \mathrm{mg}, 8 \%$). Synthesis of Tetramethyl 6,7-Difluoronaphthalene-1,2,3,4tetracarboxylate (25b). Procedure b was fol lowed, using 22b ($100 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(16 \mathrm{mg}, 0.015 \mathrm{mmol}), 23$ ($0.184 \mathrm{~mL}, 1.5 \mathrm{mmol}$), and CsF ($91 \mathrm{mg}, 0.6 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ (6 mL). Column chromatography ($\mathrm{SiO}_{2} ; 1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane then 1:1:2 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexane) afforded 24b ($5 \mathrm{mg}, 9 \%$) and 25b ($64 \mathrm{mg}, 54 \%$). Data for 24b: mp $223^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.12$ (dd, J $=11.6,7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.93 (dd, J $=11.7,8.0 \mathrm{~Hz}$, 2 H), 3.97 (s, 6H); MS, m/z (\%): 366 (35); HRMS for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~F}_{4}$,

[^6]calcd: 366.0515, found: 366.0512. Data for 25b:27 mp: 196 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 6 \mathrm{H})$, 3.85 (s, 6H); MS m/z (\%): 396 (19).

Cocyclization of 3-Methoxy-1,2-didehydrobenzene (3methoxybenzyne, 2). Synthesis of Dimethyl 1,8-Dimethox-yphenanthrene-9,10-dicarboxylate (27) and Dimethyl 1,5-Dimethoxyphenanthrene-9,10-dicarboxylate (28). Procedure a was fol lowed, using 26 ($164 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($16 \mathrm{mg}, 0.025 \mathrm{mmol}$), 23 ($0.074 \mathrm{~mL}, 0.6 \mathrm{mmol}$), and CsF (152 $\mathrm{mg}, 1 \mathrm{mmol})$. Column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3} ; 1: 3 \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane then 1:1:2 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexane) afforded 1,5,12- and 1,5,9-trimethoxytriphenylenes ($3 \mathrm{mg}, 6 \%$), 27 ($20 \mathrm{mg}, 22 \%$), 28 ($53 \mathrm{mg}, 60 \%$), and 29 ($12 \mathrm{mg}, 6 \%$). Synthesis of Tetramethyl 5-Methoxynaphthalene-1,2,3,4-tetracarboxylate (29). Procedure a was fol lowed, using 26 ($115 \mathrm{mg}, 0.35 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(18 \mathrm{mg}, 0.018 \mathrm{mmol}), 23(0.215 \mathrm{~mL}, 1.75$ mmol), and CsF ($106 \mathrm{mg}, 0.7 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(7 \mathrm{~mL})$. Column chromatography ($\mathrm{SiO}_{2} ; 1: 1: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexane $)$ afforded 27 ($2 \mathrm{mg}, 3 \%$), 28 ($7 \mathrm{mg}, 11 \%$), and 29 ($112 \mathrm{mg}, 82 \%$). Data for 27: mp $252{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.59 (t, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.07 (d, J $=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 12 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) $\delta 155.2,131.2,129.2,125.5,117.8,116.2$, 109.1, 56.8, 52.2; MS, m/z (\%): 354 (92); HRMS for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6}$, calcd.: 354.1103, found: 354.1103. Data for 28: mp $159{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 0.05 \mathrm{M}\right) \delta 9.33$ (dd, J $\left.=8.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.65-$ $7.51(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{dd}, \mathrm{J}=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, \mathrm{J}=7.5$, $0.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 170.0, 168.7, 158.4, 155.2, 132.3, 129.6, 129.1, 128.2, 127.7, 127.5, 121.3, 121.0, 118.8, 118.6, 109.8, 108.3, 56.7, 55.7, 52.7, 52.3; MS, m/z (\%): 354 (100); HRMS for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6}$, calcd: 354.1103, found: 354.1102; Anal. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6}$, calcd: C, $67.79 ; \mathrm{H}, 5.12$; found: $\mathrm{C}, 67.78 ; \mathrm{H}, 5.39$. Data for 29: mp $134{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.61-7.59(\mathrm{~m}$, 2 H), 7.02 (dd, J $=6.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H})$, $3.95(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 168.7, 167.4, 166.6, 166.5, 155.4, 133.2, 132.2, 131.4, 130.2, 127.9, 126.5, 122.0, 118.5, 108.8, 56.7, 53.1 (overlap), 52.6; MS, m / z (\%): 390 (59); HRMS for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{9}$ calcd: 390.0951, found: 390.0993.

Cocyclization of 1,2-Didehydronaphthalene (1,2-naphthyne, 3). Synthesis of Tetramethyl Phenanthrene-1,2,3,4tetracarboxylate (32). Procedure b was fol lowed, using 9 (52 $\mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(8 \mathrm{mg}, 0.0075 \mathrm{mmol}), 23(92$ $\mu \mathrm{L}, 0.75 \mathrm{mmol})$, and CsF ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$. Column chromatography ($\mathrm{SiO}_{2} ; 3: 7 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane then 1:1:3 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexane) afforded 32 as white solid ($58 \mathrm{mg}, 94 \%$): $\mathrm{mp} 162{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-$ $7.85(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.55(\mathrm{~m}, 2 \mathrm{H}), 4.03$ (s, 3H), 4.01 (s, 3H), $3.99(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$; $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCI}{ }_{3}\right)$ δ 169.9, 167.6, 167.3, 166.2, 133.9, 133.3, 131.9, 131.2, 130.3, 129.5, 128.9, 128.6, 128.2, 127.2, 126.9, 125.7, 122.8, 53.24, 53.21, 53.18, 53.13; IR (film): $1729 \mathrm{~cm}^{-1}$; UV (hexane), $\lambda_{\text {max }}$ 268, 222, $202 \mathrm{~nm} ; \mathrm{MS}, \mathrm{m} / \mathrm{z}$ (\%): 410 (71); HRMS for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{8}$, calcd: 410.1002, found: 410.1016. Synthesis of Dimethyl Benzo[c]chrysene-13,14-dicarboxylate (33), Dimethyl Dibenzo[c,g]phenanthrene-3,4-dicarboxylate (34), and Dimethyl Picene-13,14-dicarboxylate (35). Procedure a was followed, using 9 ($67 \mathrm{mg}, 0.19 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22 \mathrm{mg}$, $0.019 \mathrm{mmol}), 23(38 \mu \mathrm{~L}, 0.31 \mathrm{mmol})$, and CsF ($59 \mathrm{mg}, 0.38$ mmol) in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$. Column chromatography ($\mathrm{SiO}_{2} ; 1: 1: 8$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexane) afforded a mixture of the naphthyne trimers ($5 \mathrm{mg}, 21 \%$) and a mixture of cotrimers 33, 34, and 35 ($26 \mathrm{mg}, 68 \%, 7.2: 2.6: 1$ ratio, as determined by ${ }^{1} \mathrm{H}$ NMR). Analytical samples were obtained by preparative TLC. Data for 33: ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}\right) \delta 8.88(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.30(\mathrm{~d}, \mathrm{~J}$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-7.96(\mathrm{~m}, 5 \mathrm{H}), 7.7-7.61(\mathrm{~m}, 4 \mathrm{H}), 4.10(\mathrm{~s}$, 3 H), 3.99 (s, 3H); MS, m/z (\%): 394 (100); HRMS for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{4}$, calcd: 394.1205, found: 394.1202. Data for 34: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10$ and $\mathrm{H}-11), 8.12(\mathrm{~d}, \mathrm{~J}$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-5), 7.99(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-6), 7.95(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7$ and $\mathrm{H}-14), 7.55(\mathrm{t}, \mathrm{J}=7.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-8$ and $\mathrm{H}-13), 7.25(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9$ and $\mathrm{H}-11)$,
4.07 (s, 6H); MS, m/z (\%): 394 (64), 363 (16), 347 (39), 276 (100); HRMS for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{4}$, calcd: 394.1205, found: 394.1200. Data for 35: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.74(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-7), 8.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-11), 8.09(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-5$ and $\mathrm{H}-8$), 8.02 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}-9$), $7.74-7.62(\mathrm{~m}, 4 \mathrm{H}$; $\mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-10$ and H-11), 4.03 (s, 6H); MS, m/z (\%): 394 (100); HRMS for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{4}$, cal cd: 394.1205, found: 394.1214.

Cocyclization of 9,10-Didehydrophenanthrene (9,10phenanthryne, 4). Synthesis of Tetramethyl Triphe-nylene-1,2,3,4-tetracarboxylate (36). Procedure b was followed, using $13(40 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(5 \mathrm{mg}$, $0.005 \mathrm{mmol}), 23(67 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$, and CsF ($30 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. The resulting suspension was filtered under vacuum. The solid obtained was washed with $\mathrm{CH}_{3} \mathrm{CN}(2 \times 1$ mL) and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ 7:1 (40 mL). The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to afford $\mathbf{3 6}^{28}$ (42 mg, 91\%): mp 250 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.70(\mathrm{dt}, \mathrm{J}=7.6$ y $1.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.55(\mathrm{dt}, \mathrm{J}=7.7$ y $1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.95 (s, 6H), 3.90 (s, 6H); IR (film): $1728 \mathrm{~cm}^{-1}$; UV (CHCl_{3}), $\lambda_{\text {max }}: 280,252 \mathrm{~nm} ; \mathrm{MS}, \mathrm{m} / \mathrm{z}(\%): 460$ (100); HRMS for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{8}$, calcd: 460.1158 , found: 460.1169 . Synthesis of Dimethyl Dibenzo[f,j]picene-17,18-dicarboxylate (37). Procedure a was followed, using 13 ($61 \mathrm{mg}, 0.15 \mathrm{mmol}$), Pd$\left(\mathrm{PPh}_{3}\right)_{4}(18 \mathrm{mg}, 0.015 \mathrm{mmol}), 23(26 \mu \mathrm{~L}, 0.22 \mathrm{mmol})$, and CsF ($47 \mathrm{mg}, 0.31 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$. The resulting suspension was filtered under vacuum. The solid obtained was washed with $\mathrm{CH}_{3} \mathrm{CN}$ and dissolved in 7:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to afford a mixture of the aryne trimer ${ }^{9}$ and 37 ($27 \mathrm{mg}, 1: 6.9$ ratio, as determined by ${ }^{1} \mathrm{H}$ NMR). Column chromatography of the mixture ($\mathrm{SiO}_{2} ; 1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$) hexane then 4:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane) afforded 37^{28} ($23 \mathrm{mg}, 62 \%$) as a white solid: $\mathrm{mp} 331^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.49(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 8.14 (dd, J $=8.2$ y $0.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.72$ (dt, J $=7.6$ y $1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.60 (dt, J $=7.7$ y $1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.52 (dt, J $=7.7$ y $1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18 (dt, J = 7.7 y $1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.97 (s, 6H); IR (film): 1729 cm^{-1}; UV (CHCl_{3}), $\lambda_{\text {max }}$ 366, 322, 290, $246 \mathrm{~nm} ; \mathrm{MS}, \mathrm{m} / \mathrm{z}(\%):$ 494 (72); HRMS for $\mathrm{C}_{34} \mathrm{H}_{22} \mathrm{O}_{4}$, calcd: 494.1518, found: 494.1517.

Cocyclization of 1,2-Didehydrophenanthrene (1,2phenanthryne, 5). Synthesis of Tetramethyl Chrysenedue to the poor solubility of these compounds in common solvents.

1,2,3,4-tetracarboxylate (38). Procedure b was followed, using 20 ($40 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(5 \mathrm{mg}, 0.005$ mmol), 23 ($67 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$), and $\operatorname{CsF}(30 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. Column chromatography ($\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane 1:1 then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexane 3:3:4) afforded 38 as a white sol id ($44 \mathrm{mg}, 96 \%$): mp $183{ }^{\circ} \mathrm{C}$; ${ }^{1 \mathrm{H}}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.83(\mathrm{~d}, \mathrm{~J}=9.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.70 (dd, J $=8.9$ y $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $8.18(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.67$ $(\mathrm{m}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.0,167.61,167.56,166.1,134.2,132.3$, $132.1,130.8,130.0,129.74,129.68,129.1,128.3,127.8,127.6$, 127.3, 127.0, 126.3, 125.4, 123.7, 123.4, 123.2, 53.5, 53.27, 53.25, 53.20; IR (film): $1734 \mathrm{~cm}^{-1}$; UV $\left(\mathrm{CHCl}_{3}\right), \lambda_{\text {max }}$ 294, 252 nm; MS, m/z (\%): 460 (100); HRMS for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{8}$, calcd: 460.1158, found: 460.1158 .

Cocyclization of 3,4-Didehydrophenanthrene (3,4phenanthryne, 6). Synthesis of Tetramethyl Benzo[c]-phenanthrene-1,2,3,4-tetracarboxylate (39). Procedure b was fol lowed, using $21(40 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ ($5 \mathrm{mg}, 0.005 \mathrm{mmol}$), 23 ($67 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$), and CsF (30 mg , 0.2 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. Column chromatography (SiO_{2}; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane $1: 1$ then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexane $3: 3: 4$) afforded 39 as a white solid ($34 \mathrm{mg}, 74 \%$): mp $141^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.31(\mathrm{~m}, 1 \mathrm{H}), 8.03-7.93(\mathrm{~m}, 4 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.63-7.57 (m, 2H), $4.07(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 6 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.2,167.7,167.1,165.9,134.7,132.4,132.2$, 132.1, 131.9, 130.8, 130.6, 130.1, 130.0, 128.9, 127.9, 127.0, 126.9, 126.72, 126.66, 125.5, 125.1, 123.6, 53.3, 53.2, 53.1, 52.4; IR (film): $1733 \mathrm{~cm}^{-1}$; UV $\left(\mathrm{CHCl}_{3}\right), \lambda_{\text {max }}: 314,270,244 \mathrm{~nm} ; \mathrm{MS}$, m / z (\%): 460 (44); HRMS for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{8}$, calcd: 460.1158, found: 460.1151.

Acknowledgment. Financial support from the DGES (PB96-0967) is gratefully acknowledged. We also thank the Spanish Ministry of Education and Culture for the award of a fellowship to D. Peña.

Supporting Information Available: Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $9,11,13,14,16,18-21$, 32, 38, and 39, ${ }^{1}$ H NMR spectra for compounds 33-37, and COSY and NOESY spectra for compounds 34 and 35. This material is available free of charge via the Internet at http://pubs.acs.org.
J O000535A

[^0]: \dagger This paper is dedicated to Prof. J osé Luis Soto on the occasion of his 70th birthday.
 (1) Harvey, R. G. Polycyclic Aromatic Hydrocarbons; Wiley-VCH: Weinheim, 1997.
 (2) Floyd, A. J .; Dyke, S. F.; Ward, S. E. Chem. Rev. 1976, 76, 509562.
 (3) (a) Martin, R. H. Angew. Chem., Int. Ed. Engl. 1974, 13, 649660. (b) Laarhoven, W. H.; Prinsen, W. J. C. In Top. Curr. Chem. 1984, 125, 65-127. (c) Grimme, S.; Harren, J .; Sobanski, A.; Vögtle, F. Eur. J . Org. Chem. 1998, 37, 2659-2661.
 (4) (a) Siegel, J. S.; Sieders, T. J. Chem. Br. 1995, 31, 313-316. (b) Rabideau, P. W.; Sygula, A. Acc. Chem. Res. 1996, 29, 235-242. (c) Scott, L. T. Pure. Appl. Chem. 1996, 68, 291-300. (d) Rabideau, P W.; Sygula, A. Acc. Chem. Res. 1996, 29, 235-242. (d) Seiders, T. J .; Elliott, E. L.; Grube, G. H.; Siegel, J. S. J. Am. Chem. Soc. 1999, 121, 7804-7813.
 (5) (a) Broene, R. D.; Diederich, F. Tetrahedron Lett. 1991, 32, 52275230. (b) Müller, M.; Kubel, C.; Müllen, K. Chem. Eur. J. 1998, 4, 2099-2109. (c) Weiss, K.; Beernink, G.; Dötz, F.; Birkner, A.; Müllen, K.; Wöll, C. H. Angew. Chem., Int. Ed. 1999, 38, 3748-3752.

[^1]: (11) F or preliminary communications, see: (a) Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. J. Am. Chem. Soc. 1999, 121, 5827-5828. (b) Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. Synlett 2000, 1061-1063.
 (12) After our communication, other palladium-catalyzed cycloadditions of benzyne were reported: (a) Radhakrishnan, K. V.; Y oshikawa, E.; Yamamoto, Y. Tetrahedron Lett. 1999, 40, 7533-7535. (b) Yoshikawa, E.; Y amamoto, Y. Angew. Chem., Int. Ed. 2000, 39, 173175.
 (13) Fujisaki, S.; Eguchi, H.; Omura, A.; Okamoto, A.; Nishida, A. Bull. Chem. Soc. J pn. 1993, 66, 1576-1579.

[^2]: (14) (a) Wakatsuki, Y.; Kuramitsu, T.; Yamazaki, H. Tetrahedron Lett. 1974, 4549. (b) Moseley, K.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1974, 169-175.
 (15) See, for example: Abdulla, K.; Booth, B. L.; Stacey, C. J. Organomet. Chem. 1985, 293, 103.

[^3]: (16) (a) Maitlis, P. M. Pure Appl. Chem. 1973, 33, 489-512. (b) Yamamoto, Y.; Nagata, A.; Itoh, K. Tetrahedron Lett. 1999, 40, 50355038.
 (17) Very electron-deficient alkynes (e.g., DMAD) undergo cycloaddition reactions when palladacyclopentadiene complexes are used as precursors of $\mathrm{Pd}(0)$ catalysts: (a) Brown, L. D.; Itoh, K.; Suzuki, H.; Hirai, K.; Ibers, J. A. J. Am. Chem. Soc. 1978, 100, 8232-8238. (b) Stephan, C.; Munz, C.; Dieck, H. J . Organomet. Chem. 1993, 452, 223227.
 (18) Cyclization of alkynes by $\mathrm{Pd}(0)$ complexes and AcOH occurs via a different mechanism, involving $\mathrm{Pd}(\mathrm{II})-\mathrm{H}$ complexes as active catalysts: (a) Negishi, E.; Harring, S. L.; Owczarczyk, Z.; M ohamud, M. M.; Ay, A. Tetrahedron Lett. 1992, 33, 3253-3256. (b) Brown, S.; Clarkson, S.; Grigg, R.; Sridharan, V. Tetrahedron Lett. 1993, 34, 157160.
 (19) Cyclotrimerizations promoted by Pd / C and $\mathrm{Me}_{3} \mathrm{SiCl}$ in THF probably involve $\mathrm{Pd}(\mathrm{II})$ species (e.g., PdCl_{2}) as active catalysts: J higan, A. K.; Maier, W. F. J . Org. Chem. 1987, 52, 1161-1165.
 (20) Himeshima, Y.; Sonoda, T.; K obayashi, H. Chem. Lett. 1983, 1211-1214.

[^4]: (21) Greaves, E. O.; Lock, C. J. L.; Maitlis, P. M. Can. J . Chem. 1968, 46, 3879-3891.
 (22) (a) M oseley, K.; Maitlis, P. M. J. Chem. Soc., Chem. Commun. 1971, 1604-1606. (b) M oseley, K.; M aitlis, P. M. J. Chem. Soc., Dalton Trans. 1974, 169-175.

[^5]: (23) Willmore, N. D.; Liu, L.; Katz, T. J. Angew. Chem., Int. Ed. Engl. 1992, 31, 1093-1095.

[^6]: (26) Sakakibara, T.; Tanaka, Y.; Yamasaki, S. Chem. Lett. 1986

